

Project Title

Efficient AI based Triage Framework for Head and Neck Cancer Screening

Project Lead and Members

- Sean Shao Wei LAM
- Yunyun Cao
- Boon Yew Ang
- Samuel Altonji
- Marcus Eng Hock ONG
- Walter Tsong Lee
- Hiang Khoon Tan

Organisation(s) Involved

Health Services Research Centre, SingHealth Research

Healthcare Family Group(s) Involved in this Project

Medical, Healthcare research

Applicable Specialty or Discipline

Otolaryngology

Aim(s)

Develop an AI based decision support system to enable health workers in low resource settings to triage patients more accurately for laryngeal and other head and neck cancer (HNCs) and refer patients to medical facilities for further evaluation.

Background

See poster appended/ below

Methods

See poster appended/ below

Results

See poster appended/ below

Conclusion

See poster appended/ below

Additional Information

Singapore Healthcare Management (SHM) Congress 2023 – Merit Prize (Operations category)

Project Category

Technology

Digital Health, Data Analytics - Artificial Intelligence,

Care & Process Redesign

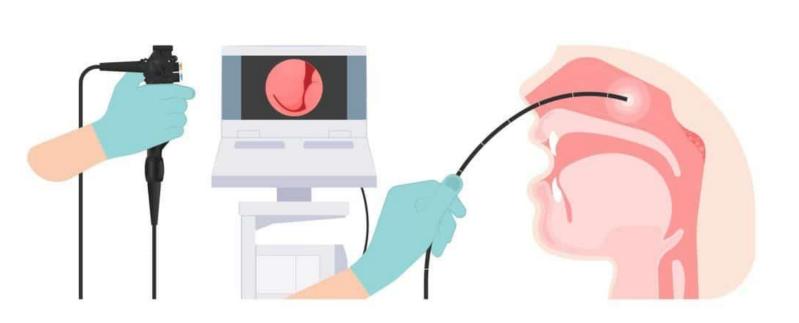
Quality Improvement, Clinical Practice Improvement, Job Effectiveness,

Keywords

AI-Based Triage Framework, Enhanced Decision Support System (DSS), Head & Neck Cancer (H&N) Screening

Name and Email of Project Contact Person(s)

Name: Sean Shao Wei LAM


Email: singaporehealthcaremanagement@singhealth.com.sg

Efficient Al-based Triage Framework for Head and Neck Cancer Screening

Sean Shao Wei LAM, SingHealth, Duke-NUS Yunyun, Cao, SingHealth, NUS Boon Yew, Ang, SingHealth, Duke-NUS Samuel, Altonji , Duke Health System Marcus Eng Hock ONG, SingHealth, Duke-NUS Walter Tsong, Lee, Duke Health System Hiang Khoon, Tan, SingHealth, Duke-NUS

Introduction

- Early diagnosis of head and neck (H&N) cancers is of primary importance in reducing global health burden and patient morbidity.
- In the developing world, there is a disproportionate growth in the incidence and mortality of H&N Cancers.
- Al enhanced decision support system (DSS) would enable personnel in low and middle-income countries (LMICs) to effectively screen, triage and refer diseases of the head and neck for advanced care at specialized centers.

Aims

Develop an Al-based decision support system to enable health workers in low resource settings to triage patients more accurately for laryngeal and other head and neck cancer (HNCs) and refer patients to medical facilities for further evaluation

Data and Methods

Data and Image Processing

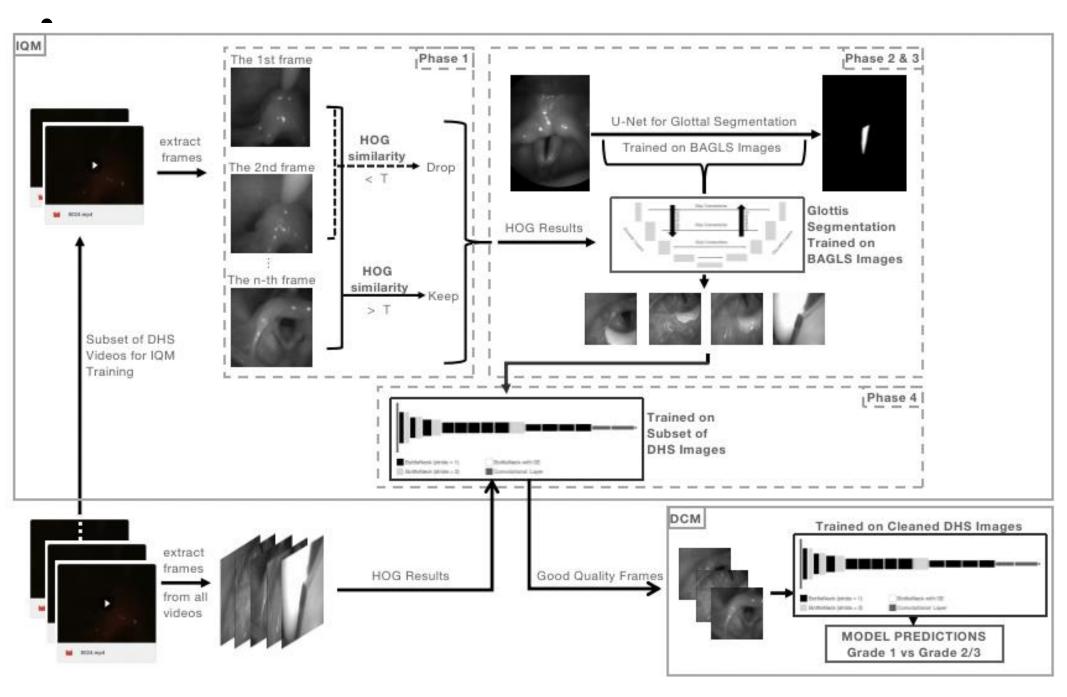
- Cohort summary and analysis
- Image extraction and reshaping using Python

Predictive Framework

- Image quality module (IQM) development
- Disease classification module (DCM) development
- Evaluating against metrics

Raw image

processing


• Glottis identification

Validation and Interpretation

- Validation of the quality of input images
- Model explainer built upon Gradient class activation maps (GradCam)

Datasets

- The Benchmark for Automatic Glottis Segmentation (BAGLS) dataset[1] – 559 videos (59,250 frames)
- Duke University Health System (DHS) Cohort 132 videos (190,978 frames)

IQM Model

- UNet for Glottal Segmentation and automatic labelling
- Manual checking of quality labels
- CNN, ResNet50, GhostNet[2] for quality detection

Quality evaluation

Image

Disease Classification Module

Explainer

Quality

Module

Module

Maps (GradCam) Locally Interpretable Model-Agnostic

Explainer (LIME)

Gradient Activation

Aggregation

Bootstrap

Bagging at video level for patient level inference

• Trained on good

quality images

Recommended for

referral/Non-

• Inference for 2

eferrals

classes

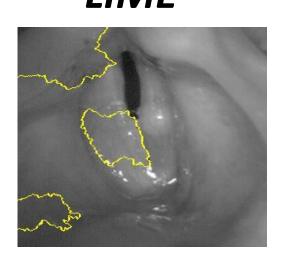
DCM Model

- 116 patients with 20,040 good quality frames
- CNN, ResNet50, MobileNetV2, GhostNet for classification of referral vs non-referral

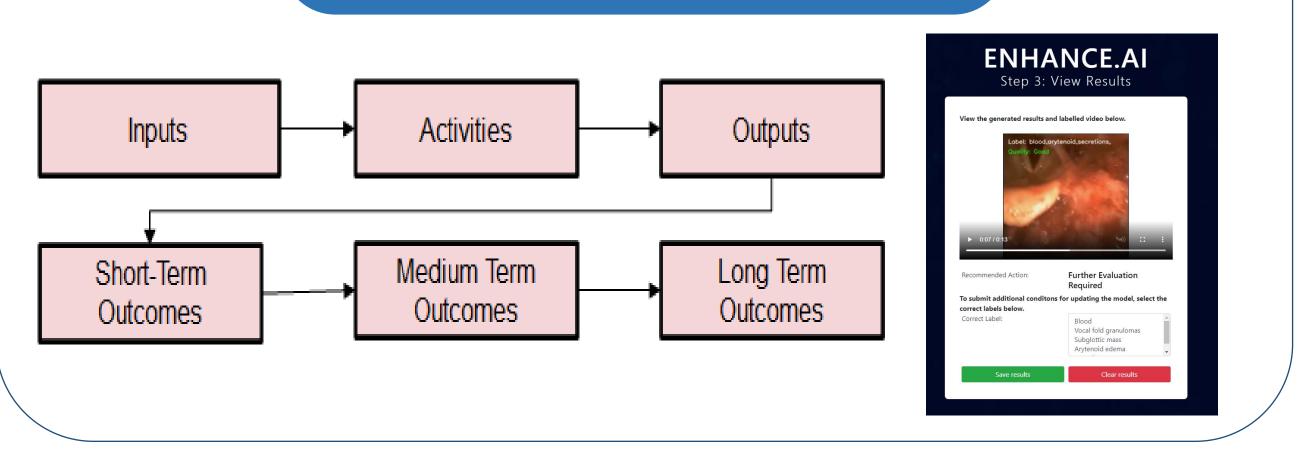
Technology Stack

Results

IQM Classification Results


Model	Accuracy	F1-score	AU_ROC	AU_PRC	FLOPS
CNN	0.699	0.673	0.724	0.729	50.0G
ResNet50	0.833	0.832	0.746	0.957	245.0G
GhostNet	0.829	0.827	0.895	0.878	8.7G

Explainer Module


Referral Grade

GradCam

LIME

Implementation Study

DCM Classification Results (patient-level)

Model	Accuracy	F1-score	AU_ROC	AU_PRC	Inference Time	FLOPS
CNN	0.652	0.624	0.595	0.805	8.09s	50.0G
ResNet50	0.739	0.697	0.667	0.850	16.71s	245G
MobileNetV2	0.696	0.629	0.611	0.833	8.62s	20.3G
GhostNet	0.870	0.863	0.833	0.912	7.95s	8.7G

Conclusion

- Efficient Al-augmented DSS for video classification of FNS videos is demonstrated and it achieved acceptable performance.
- DSS envisioned to enable health workers in LMICs to triage patients more accurately and refer for further evaluation.

References:

- Gómez, P. et al. BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation. Sci. Data 7, 186 (2020). Søreide K et al. Br J Surg 2020;107(10):1250-1261. doi:10.1002/bjs.11670
- Han, K. et al. GhostNet: More Features from Cheap Operations. (2019) doi:10.48550/ARXIV.1911.11907. This project is funded by the Duke/Duke NUS Innovation Collaboration Pilot Grant (Duke/Duke-NUS/ICA(Pilot)/2020/0003).